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J. Phys. A: Math. Gen. 24 (1991) 5675-5682. Printed in the UK 

Hopf superalgebra contractions and R-matrix for fermions 

E Ceieghiniijj,R Giachettiiv, P P Kuiishs, E Soracet and M Tariinii 
t Dipartimento di Fisica, Universith di Firenze and INFN-Firenze, Italy 
t Dipartimento di Matematica. Vnivenith di Bologna, Italy 
5 Leningrad branch of Steklov Mathematical Institute, USSR 

Received 1 July 1991 

Abstract. DiKelent contractions are applied to the quantum superalgebra ospJ1IZ). 
In the &st  of them the graded analogue s-H,(l) of the onedimensional Heisenberg 
quantum algebra is obtained and its R-matrix explicitly calculated. In the second 
contraction a Z2-graded version of the p-oscillator is proposed and Anally the super- 
symmetric two-dkenional Euclidean quantum algebra s-Ep(2) is found. 

0. Introduction 

In recent times increasing interest h a s  been shown in the st,udy of quantum algebras 
and to their physical applications. The most commonly considered cases are related 
to  the quantized version of simple Lie algebras, where a general theory has been 
developed which rephrases the classical Cartan theory and allows the calculation of 
fundamental objects such as the R-matrix [l]. T h e  classical concepts and procedures 
have been generalized to  graded structures where, in particular, actions of groups and 
algebras have been studied [2]. Taking into account these interests, quantum analogues 
of simple superalgebras have been defined [3]. 

A general theory for non-semisimple algebras is not available. A popular method 
for collecting information on such structures, starting from semisimple ones, is the 
contraction technique [4] which has also been generalized to  the graded case [SI. The 
contraction for q-deformed structures was introduced in [6, 71 and the quantization of 
the Heisenberg and Euclidean Hopf algebras was attained in [S, 91. 

The purpose of this article is to give the quantum superalgebras obtained by differ- 
ent contractions of osp,(ll2). In the first of them we obtain the quantum superalgebra 
s-H,(l)  with one boson and one fermion generator together with a number operator; 
the R-matrix of this IIopf algebra is explicitly calculated. In the second contraction 
the quantum parameter is fixed and we obtain the Z2-graded version of the g-oscillator 
[ lo ,  111. A final contraction leads to the Hopf algebra s-E,(2), the supersymrrietric 
analogue of the construction given in 16, 7,  91. 

A preliminary version of some of the results obtained in this article was presented 
during the first semester on ‘Quantum Groups’ (Leningrad, 1990) 191. 

11 E-mail: celeghini@fi.infn.it 
([ E-mail: gia&ettiQdm.unibo.it 
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1. Quantum superalgebra s-H,(l) 

The quantum superalgebra osp,(ll2) has been described in [3]. Its generators are the 
even element H and the pair of odd elements U+, The graded commutation relations 
read 

The Casimir element c 2 ( q )  is 

(1.2) 
s = ze-”/’u + t = zeVH12u- z = (4~inh(q/2)sinh(2q))’/~. 

pode and counit: 
The Hopf superalgebra structure is defined by the following comultiplication, anti- 

AU, = U+ B enH/’ + e-qHI2 8 U, 

A H  = H @  1 t 1 @ H 

Y(H) = - H  Y ( u + )  = 0, 

€(1) = 1 

(1.3) 

r ( H )  = €(U*) = 0 

where here and later the tensor product is also graded. 
The contraction technique used in [7-91 will be applied here, giving an interesting 

result in the graded case as well. We present the contraction in the case of the Lie 
superalgebra where the even generators are X,, H and the odd are U,. The algebra 
is given by the following graded commutators: 

[H, X,] = [X,, X-] = 2 H  

[H, U+] = *$U* [X,, uYI = U+ [X*.,v*I= 0 (1.4) 

[U+,.-] = -‘H 2 [U*,.+] = f$X,. 
In analogy with the purely bosonic situation [9] we extend osp(l12) by a central gen- 
erator Q and contract this extension. The scaling we shall use is the following: 

E 

E 

E 

& 

where E is an even parameter, so that 1 
The contracted algebra reads: 

-1 E - 2  )[$) 
0 2  

e contraction preserves the grading 
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h being a central element. The contracted Casimir c2 becomes 

C2 = - h N  + $(.-a+ + a+a-)  + (b-b+ - b+b- ) .  (1.7) 

We now consider the contraction of the q-deformed algebra. According to (l.l), 
maintaining the definition X ,  = *Z[u+, ut] and rescaling the quantum parameter as 

(i.8) - - 2  
W = L E  -q 

we see that the commutators which differ from the classical relations (1.6) are 

(1.9) 

Here wesee that (a+,a-,hf) generate the quantum algebra H q ( l )  defined in 191, while 
( b + ,  b _  , N )  give a quantum fermionic structure. The contraction of cz(q) is 

c 2 ( w )  = --sinh W . (%) N + $(.-a+ + a+a-) + cosh ($) (b-b+ - b + b - )  (1.10) 

which represents the q-deformation of (1.7). The contractions of coproducts, antipodes 
and counits are then straightforward: 

(1.11) 

We shall now turn to  the representations obtained by contracting those described 
in 131. The latter are summarized as follows. 

where 

sinh ('(' + '71 + ')) cosh ( ' ( I  - "I) 

1 sinh ( ' ( I  4 ") cosh ( 7 1 ( 1 + ~ +  ") 
I - m odd 

(1.13) \ 4 / \ 4 /  X 

I -  m even 

with N - ( / ,  m)  = (-I)'-"-'N + ( l , m  - I) ,  m = 1 , l -  I , / -  2 ,... , - I .  
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The  rescaling of the generators given in (1.5) leads to the introduction of the 
parameters k and n for the contracted representations [3] defined as 

l = ~ - ' k  l - m = n .  (1.14) 

As a consequence the leading terms of A', are 

c-'\/(sinh(wk/4))/w n o d d  

n even 

and 

n even. 

Performing the limit E -+ 0 the matrix elements of b, and a+ are 

(1.15) 

(1.16) 

b-e?,+I k = b-e;, = 0 

(1.17) 

and 

sinh(wk/2) sinh(wk/2) 
%"+I 

(1.18) 
sinh(wk/2) 

e2n-2. 
sinh(wk/2) 

e2n-1 

Moreover 

Ne; = -e, ' he: = ke:. (1.19) 
2 

The R-matrix for osp,(ll2) is given, in terms of s and 1 as in (1 .2) ,  by [3] 

(1.20) 

where 
i - 1  - + I 4  + erli14 

a .  = l i l t  = (-) e--n/4 e + @I4 (1.21) 
e - r l i ( i t l ) l d  

' (ern - l)'[i]+! 

(1.22) 
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and 

24' 2 4 i t l  
U2' -+ - E6iw3ii!  ' z i t 1  -+ - E 6 i t 2 w 3 i + i i ! .  

The sum in the R-matrix is finite in the limit E -+ 0 and reads 

(1.23) 

m 

T u ' s i  I @ t i  = e ~ p ( - w e - ' " ~ l ~ u  - @ewh14u f )(1 - 2 t ! ~ e - ~ ~ l " 6 -  @ewhlab+). (1.24) 
i=o 

The exponent in front of the sum in the R-matrix is for E -+ 0 divergent. Here we 
can repeat what was seen for H,(1) [9], namely that the divergent part is central. In 
fact using the scaling (1.5) we get 

eq(-21iAy g =+ enp(-E-2p&/q)h @ k )  exp((G/2)(h @ ,hJ + )J 8 .".)I. ( ! . 2 5 )  

Then the limit of R, disregarding the central term, is 

R = exp((w/2)(h @ N + N 18 h))exp(-we-wh/4a- r8 e"h/4ut) 

x (1 - 2we-"hld6- @eWhld6 + ) (1.26) 

or also 

R = ,wn izeAen  (1.27) 

where, with r = h @ 1 - 1 8  h ,  we have 

R = h @ N + N @  h A = -we-wr14( a @ a t )  
(1.28) 

= -2we-wr/d (b- @ bt). 

By direct computation i t  is straightforward to prove that R defines a similarity 
transformation of A' = U o A into A, where U is the graded permutation map, u(a @ 
b j  = i-jp!c)p('!b 8 U. Taking into account the grading of the tensor product, the 
Yang-Baxter equation RI2R,,Ra3 R,,R,,R,, is verified. We want t o  stress that 
the hosonic part  of R is exactly the same as that found in [9] and, because of the 
commutativity of bosons with fermions, the R-matrix without the term eA works 
perfectly on the purely fermionic sector. 

2. Z2-graded q-oscil lator 

Another type of contraction of osp,(ll2) gives the 2,-graded q-oscillator. In this case 
the parameter q is not resealed: we can think of this  contraction as an infinite q-spin 
limit 1 i t o o .  Let us denote the limiting generators as 

N = lim Z ( 1 -  H )  
I-+m 
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where q = e-?/* and [z], = (q" - q-")(q - q - ' ) - ' .  The corresponding relations are: 

[N,CI = -e [N,C'I = c' [C,C+I = 9 - N .  (2.2) 

In order to have relationships similar to these for the usual q-oscillator, we intro- 
duce the generators [10,12] 

(2.3) c = qN14C ,t = (tqN/4 

so that 

cct + q'/2ctc = q-N/2, 

f = (-1)Nq-N12 (c t c -  [NI,). 

(2.4) 

There is a central element as for the q-oscillator, namely ([I,) as in (1.21)) 

(2.5) 

It is interesting to note that there is a contraction limit of the osp,(ll2) Casimir 
element (1.2) which does not coincide with (2.5), but is a quadratic polynomial in z .  

One can easily construct a set of representations of the Z2-graded oscillator (2.3)- 
(2.4) parametrized by p E C (omitting the requirements of *-Hermiticity connection 
between c and c'). The representation is given in a Z,-graded linear space 1 2 ,  where 
the parity of the basis vector f, is (-1)" and where the action of e, e', N on f,, reads 

C f "  = .i,f,-, c'f, = P,f,+l Nf,, = 4, (2.6) 

where 

a$, = pqnlZ - (-l)"[n], SpecN = {.. .  - 2,-l ,O, 1 , 2 , .  . .}. (2.7) 

Just as in the case of the q-oscillator, the question of the existence of a coproduct is 
left open. 

3. s-E,(2) superalgebra 

In this section we shall describe the contraction of osp,(ll2) giving rise to a graded 
form of the E,(2) Euclidean algebra with non-symmetric coproduct, following the lines 
of [6, 9). The scaling of the generators is given by 

€ 2  €2 
(3 .1)  z,* = € U *  T* = &qX* = + J * , t J * ]  

while the generator H and the deformation parameter are held fixed. As a result we 
obtain the relationships defining s-E,(2): 

The structure of the Hopf algebra is then completed by 
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A(Vi) = 'Di @ + e P H I 2  @Vi 

y ( ~ * )  = - e * " I 4 ~  i 

f(V*) = 0. 

(3 .3 )  

- rrom ( % i j  ?; = &D+ j u  together with H reproduce the structure of i'he aigebra of 
E(2) (the coalgebra, however, is different). T h e  representations of s-E,(2) are obtained 
as a limit of (1.11)-(1.12) by making the appropriate scaling of 1. Indeed, with 

r = ee"(2'+1)/8 (~ inh (2q)cosh (q /4 ) ) - '~~  (3.4) 

+h.. _-__...,..-&-&:-..e 
Y I l C  ' r p ' c u r n u ~ b w l m  ,COY 

(3 .5 )  
n 
2 

Hf,, = --f,. V t f "  = .f"+l V-f, = (-1)".f,-1 

To conclude our detailed analysis of the contractions of Z2-graded q-deformed Lie 
algebras we want t o  study the analogue of the contraction to Es(2) defined in [7]. 
IU ~ L L I ~  ~ ' U L ~ U X  we U ~ Y C  w I I I U U U U L C  a I ~ X L U L U ~ ~  I ~ U L U U C ~  U ~ W ~ K N  I IUI s-Z (2). By 
analogy with [7], we define 

m^ .L:̂  L .... ~. :_I ..,.... . P . . _ I ~ ~ ~  ~~~~~~~L~~ nr . .  
9 

(3 .6)  d ,  = U+ - ( - 1 ) " ~ -  
' 

d ,  = ( - 1 )  F U+ + U -  

with 

s inhjql i )  
sinh(2q) [d,,d,] = -2 . 

(3 .7)  
[ H , d , ]  = $( -1 )Fd2  [H,d,]  = $ ( - l ) F d l  

The rescaling 

H H E H  d ,  c) Ed, d2 Y d ,  q c) E-lw (3.8) 

defines a different structure of a q-deformed s-E(2). The properties of the coalgebra- 
e.g. the comultiplication of the fermion number operator-remain to be investigated. 

We finally observe that ,  similarly to what has been established in the purely 
bosonic case [6],  the results of this section support the existence of a graded ana- 
logue of q-special functions. 
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